PODS™ Human IGF-1

Code Description Price Qty
PPH34-50 PODS™ Human IGF-1, 50 million £95.00
PPH34-250 PODS™ Human IGF-1, 250 million £295.00
PPH34-1000 PODS™ Human IGF-1, 1 billion £995.00

PODS™ Technology

PODS™ proteins are made using an insect cell expression system in which the active protein is co-expressed alongside polyhedrin carrier protein. Polyhedrin forms microcrystals within insect cells which specifically capture the active protein to form a co-crystal complex. The active protein is captured in its nascent, natively folded form with limited scope for proteolytic degradation. Consequently, excellent levels of bioactivity are observed. The PODS™ crystals provide a sustained release mechanism and can be used to functionalize surfaces. For further details, please refer to the PODS™ Technology page.

Product Description

The product contains the polyhedrin protein co-crystalized with Human IGF-1. Insulin-like Growth Factor 1 (IGF-1) is a growth factor that is produced by the liver. IGF-1 production is stimulated by Growth Hormone. IGF-1 binds the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor to stimulate systemic body growth. IGF-1 is one of the most potent activators of the AKT signaling pathway, which stimulates cell proliferation and inhibits programmed cell death.

Usage Recommendation

PODS™ crystals provide a depot of proteins which are steadily secreted. It has been estimated that the biological activity of 50 million PODS™ crystals generates the same peak dose as 3.3 μg of standard recombinant protein. However, at 5 days following the start of seeding the PODS™ crystals, there are more than 50% of these peak levels still present in the culture system. Ultimately, the amount of PODS™ crystals that is optimal for a particular experiment should be determined empirically. Based on previous data, we suggest using 50 million PODS™ crystals in place of 3.3 μg of standard growth factor as a starting point."

To control for cross-reactivity with cells or as a negative control, we recommend using PODS™ growth factors alongside PODS™ Empty crystals, as the latter do not contain or release cargo protein.

AA Sequence

MADVAGTSNR DFRGREQRLF NSEQYNYNNS KNSRPSTSLY KKAGSPETLC GAELVDALQF VCGDRGFYFN KPTGYGSSSR RAPQTGIVDE CCFRSCDLRR LEMYCAPLKP AKSA

Alternative Names

Insulin-like Growth Factor 1, somatamedin C, mechano growth factor, IGF-IA, IGF-IB, IGF-I, IGFI, insulin-like growth factor I, IGF1A1, insulin-like growth factor IA, insulin-like growth factor IB, MGF2, IBP1
Product Details
Length 114 aa
Molecular Weight 13 kDa
Structure Monomer
Source Spodoptera frugiperda (Sf9) cell culture
Accession Number P05019
Endotoxin Level <0.06 EU/ml as measured by gel clot LAL assay
Formulation PODS™ were lyophilized from a volatile solution
Reconstitution

PODS™ protein crystals may be reconstituted at 200 million PODS™/ml in water. 20% glucose has a buoyant density closer to PODS™ protein crystals and can be useful for aliquoting.

PODS™ protein crystals are highly stable when stored in aqueous solution (pH range 6 - 8).

Stability and Storage Upon receipt, store at 4°C. PODS™ protein crystals are stable for at least 1 year when dry and 6 months when resuspended.

References

Fasséli Coulibaly, Elaine Chiu, Keiko Ikeda, Sascha Gutmann, Peter W. Haebel, Clemens Schulze-Briese, Hajime Mori, and Peter Metcalf. The molecular organization of cypovirus polyhedra. (2007) Nature. 446: 97-101.

Rey FA. Virology: Holed up in a natural crystal. (2007) Nature. 446: 35-37.

Mori H. Immobilization of Bioactive Growth Factors into Cubic Proteinous Microcrystals (Cypovirus Polyhedra) and Control of Cell Proliferation and Differentiation. (2010) NSTI-Nanotech. 3: 222-225.

Satoshi Abe, Hiroshi Ijiri, Hashiru Negishi, Hiroyuki Yamanaka, Katsuhito Sasaki, Kunio Hirata, Hajime Mori, and Takafumi Ueno. Design of Enzyme-Encapsulated Protein Containers by In-Vivo Crystal Engineering. (2015) Advanced Materials. 27(48): 7951-7956.