0 items$0.00

Accelerate towards your research goals

We provide reagents and services for cell-based research.

Our innovative printable PODS growth factors, conventional growth factors, and small molecules serve to guide and support cells. Our wide range of surfaces and extracellular matrix products, including Softwell and the versatile PeptiGel self-assembling peptide hydrogels (SAPHs) enable more challenging cell culture. Our highly-cited karyotyping service ensures the integrity of your cell-based work.

For extracellular vesicle research, Cell Guidance Systems products and services enable the purification and subsequent analysis of exosomes and other EVs.

 

Cell Guidance Systems Blog

See all blog articles

Growth factor kinetics in vivo and in vitro

Growth factor kinetics in vivo and in vitro

It is important to understand that there is a big difference between in vivo and in vitro stability of growth factors. In-vivo, growth factor half-lives can be just a few minutes. But the same growth factors have in-vitro half-lives of a few hours. What causes this?

Read More

Printing better celluarized blood vessels with PODS

Printing better celluarized blood vessels with PODS

In an exciting development, biomaterials scientists have used advanced biomaterials and an ingenious manufacturing method to produce co-axial extruded, cellularized blood vessels incorporating cells derived in situ from fat stem cells from the patient.

Read More

Pseudotime vs. actual time for genes

Pseudotime vs. actual time for genes

As well as actual, canonical time marked by ticking of a clock, time can be marked by events. Pseudotime and canonical expression time are concepts used in the study of gene expression dynamics, particularly in the context of developmental biology and single-cell RNA sequencing (scRNA-seq).

Read More

Are some cell types more receptive to exosomes?

Are some cell types more receptive to exosomes?

The ability of cells to generate exosomes varies significantly between different types of cells. Cancer cells, for example, reliably yield large amounts of exosomes when grown in culture. Immune cells and MSCs are also relatively high-yielding. But what about exosome ingestion?

Read More

Polyhedrin microparticle neuronal drug delivery

Polyhedrin microparticle neuronal drug delivery

Drug delivery to the central nervous system (CNS) is challenging. CNS drugs, for example, that are unable to cross the blood-brain barrier (BBB) cannot be delivered orally or intravenously. Developing drug delivery technologies that can address the specific challenges of delivery to the CNS is a very active area of research. The interaction between drugs and immune cells modulates pharmacodynamics. A new paper from researchers at Keele University explores the interaction between a candidate drug microparticle technology and brain immune cells.

Read More

Freeze dried exosomes trialled to treat diabetic foot ulcers

Freeze dried exosomes trialled to treat diabetic foot ulcers

Extracellular vesicles (EVs), including exosomes, can be used therapeutically. Rion, a company spun out of the Mayo Clinic in Rochester, Minnesota, recently began phase II trials to evaluate the use of a powdered formulation of platelet-derived exosomes to treat diabetic foot ulcers.

Read More

PeptiGel vs Collagen

PeptiGel vs Collagen

When discussing 3D Cell Culture, researchers and scientists will talk about collagen, as it is quite popular as a matrix material. Collagen does have limitations as a scaffold though, in a similar way to many other natural scaffold materials, which is one of the reasons why Cell Guidance Systems are offering a fully synthetic alternative – PeptiGels.

Read More

Newsletter