PODS® Human Noggin

Code Description Price Qty
PPH304-50 PODS® Human Noggin, 50 million £100.00
PPH304-250 PODS® Human Noggin, 250 million £305.00
PPH304-1000 PODS® Human Noggin, 1 billion £1,025.00
PODS® co-crystals
PODS® co-crystals

PODS® Technology

PODS® proteins are made using an insect cell expression system in which the active protein is co-expressed alongside polyhedrin carrier protein. Polyhedrin forms microcrystals within insect cells which specifically capture the active protein to form a co-crystal complex. The active protein is captured in its nascent, natively folded form with limited scope for proteolytic degradation. Consequently, excellent levels of bioactivity are observed. The PODS® co-crystals provide a sustained release mechanism and can be used to functionalize surfaces. For further details, please refer to the PODS® Technology page.

Product Description

The product contains the polyhedrin protein co-crystalized with Human Noggin. Noggin belongs to a group of diffusible proteins that bind to ligands of the TGF-β family, and regulate their activity by inhibiting their access to signaling receptors. During embryogenesis, Noggin is a secreted homodimeric glycoprotein that is an antagonist of bone morphogenetic proteins (BMPs) at specific times, for example, during neural tube, somite and cardiomyocyte growth and patterning. During culture of human embryonic stem cells (hESC) or neural stem cells under certain conditions, addition of Noggin to antagonize BMP activity may allow stem cells to proliferate while maintaining their undifferentiated state, or alternatively, to differentiate into dopaminergic neurons.

Usage Recommendation

PODS® co-crystals provide a depot of proteins which are steadily secreted. It has been estimated that the biological activity of 50 million PODS® co-crystals generates the same peak dose as 3.3 μg of standard recombinant protein. However, at 5 days following the start of seeding the PODS® co-crystals, there are more than 50% of these peak levels still present in the culture system. Ultimately, the amount of PODS® co-crystals that is optimal for a particular experiment should be determined empirically. Based on previous data, we suggest using 50 million PODS® co-crystals in place of 3.3 μg of standard growth factor as a starting point."

To control for cross-reactivity with cells or as a negative control, we recommend using PODS® growth factors alongside PODS® Empty crystals, as the latter do not contain or release cargo protein.

AA Sequence

MADVAGTSNR DFRGREQRLF NSEQYNYNNS KNSRPSTSLY KKAGFQHYLH IRPAPSDNLP LVDLIEHPDP IFDPKEKDLN ETLLRSLLGG HYDPGFMATS PPEDRPGGGG GAAGGAEDLA ELDQLLRQRP SGAMPSEIKG LEFSEGLAQG KKQRLSKKLR RKLQMWLWSQ TFCPVLYAWN DLGSRFWPRY VKVGSCFSKR SCSVPEGMVC KPSKSVHLTV LRWRCQRRGG QRCGWIPIQY PIISECKCSC

Alternative Names

NOG, SYM1, symphalangism 1 (proximal), synostoses (multiple) syndrome 1, SYNS1

Research Use Only

PODS® Limited Use Label License. A license applies for this product, please see Product User Guide below for details.
Product Details
Length 250 aa
Molecular Weight 56.4 kDa
Structure Dimer
Source Spodoptera frugiperda (Sf9) cell culture
Accession Number Q13253
Endotoxin Level <0.06 EU/ml as measured by gel clot LAL assay
Formulation PODS® were lyophilized from a volatile solution
Reconstitution

PODS® co-crystals may be reconstituted at 200 million co-crystals/ml in water. 20% glucose has a buoyant density closer to PODS® co-crystals and can be useful for aliquoting.

PODS® co-crystals are highly stable when stored in aqueous solution (pH range 6 - 8).

Stability and Storage Upon receipt, store at 4°C. PODS® co-crystals are stable for at least 1 year when dry and 6 months when resuspended.

References

Hiroshi Ijiri, Fasséli Coulibaly, Gento Nishimura, Daisuke Nakai, Elaine Chiu, Chiemi Takenaka, Keiko Ikeda, Hiroshi Nakazawa, Norio Hamada, Eiji Kotani, Peter Metcalf. Structure-based targeting of bioactive proteins into cypovirus polyhedra and application to immobilized cytokines for mammalian cell culture. (2009) Biomaterials. 30(26): 4297-4308.

Shimabukuro J, Yamaoka A, Murata K, Kotani E, Hirano T, Nakajima Y, Matsumoto G, Mori H. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals. (2014) Materials and Science Engineering. 42: 64-69.

Fasséli Coulibaly, Elaine Chiu, Keiko Ikeda, Sascha Gutmann, Peter W. Haebel, Clemens Schulze-Briese, Hajime Mori, and Peter Metcalf. The molecular organization of cypovirus polyhedra. (2007) Nature. 446: 97-101.

Rey FA. Virology: Holed up in a natural crystal. (2007) Nature. 446: 35-37.

Mori H. Immobilization of Bioactive Growth Factors into Cubic Proteinous Microcrystals (Cypovirus Polyhedra) and Control of Cell Proliferation and Differentiation. (2010) NSTI-Nanotech. 3: 222-225.

Satoshi Abe, Hiroshi Ijiri, Hashiru Negishi, Hiroyuki Yamanaka, Katsuhito Sasaki, Kunio Hirata, Hajime Mori, and Takafumi Ueno. Design of Enzyme-Encapsulated Protein Containers by In-Vivo Crystal Engineering. (2015) Advanced Materials. 27(48): 7951-7956.