PODS® GFP


PODS® Technology
PODS® proteins are made using an insect cell expression system in which the active protein is co-expressed alongside polyhedrin carrier protein. Polyhedrin forms microcrystals within insect cells which specifically capture the active protein to form a co-crystal complex. The active protein is captured in its nascent, natively folded form with limited scope for proteolytic degradation. Consequently, excellent levels of bioactivity are observed. The PODS® co-crystals provide a sustained release mechanism and can be used to functionalize surfaces. For further details, please refer to the PODS® Technology page.Product Description
The product contains polyhedrin protein co-crystalized with Green Fluorescent Protein (GFP). GFP is a uniquely versatile biomarker and, encased into PODS® crystals, offers a simple way to visualize und localize PODS® crystals embedded in biomaterials, such as hydrogels and scaffolds, using fluorescence microscopy. PODS® GFP crystals can be excited at 488 nm and optimally detected at 510 nm, compatible with commonly available filter sets.Usage Recommendation
PODS® GFP crystals display the same physical properties as other PODS® growth factor products. While PODS® GFP behave in the same way as other PODS® co-crystals, they differ in that they not contain a cargo protein that elicits effects on cells. Instead of this, they have fluorescent proteins (GFP) embedded. PODS® GFP can be used analogous to PODS® Empty as an inert control, but the primary purpose is to enable visualization and localization of PODS® crystals in cell culture, e.g. in 3D scaffolds, hydrogels and other biomaterials, utilizing fluorescence microscopy.
Animal-Free
This product is produced with no animal derived raw products. All processing and handling employs animal free equipment and animal free protocols.AA Sequence
MADVAGTSNR DFRGREQRLF NSEQYNYNNS KNSRPSTSLY KKAGFMVSKG EELFTGVVPI LVELDGDVNG HKFSVSGEGE GDATYGKLTL KFICTTGKLP VPWPTLVTTL TYGVQCFSRY PDHMKQHDFF KSAMPEGYVQ ERTIFFKDDG NYKTRAEVKF EGDTLVNRIE LKGIDFKEDG NILGHKLEYN YNSHNVYIMA DKQKNGIKVN FKIRHNIEDG SVQLADHYQQ NTPIGDGPVL LPDNHYLSTQ SALSKDPNEK RDHMVLLEFV TAAGITLGMD QLYK*Alternative Names
Bombyx mori cypovirus polyhedrin protein, green fluorescent proteinResearch Use Only
This product is for Research Use Only.Product Details | |
---|---|
Length | 240 aa |
Molecular Weight | 32.1 kDa |
Structure | Monomer |
Source | Spodoptera frugiperda (Sf9) cell culture |
Endotoxin Level | <0.06 EU/ml as measured by gel clot LAL assay |
Formulation | PODS® were lyophilized from a volatile solution |
Reconstitution |
PODS® co-crystals may be reconstituted at 200 million co-crystals/ml in sterile PBS. 20% glucose has a buoyant density closer to PODS® co-crystals and can be useful for aliquoting. PODS® co-crystals are highly stable when stored in aqueous solution (pH range 6 - 8). |
Stability and Storage | Upon receipt, store at 4°C. PODS® co-crystals are stable for at least 1 year when dry and 6 months when resuspended. |
References
Fasséli Coulibaly, Elaine Chiu, Keiko Ikeda, Sascha Gutmann, Peter W. Haebel, Clemens Schulze-Briese, Hajime Mori, and Peter Metcalf. The molecular organization of cypovirus polyhedra. (2007) Nature. 446: 97-101.
Rey FA. Virology: Holed up in a natural crystal. (2007) Nature. 446: 35-37.
Mori H. Immobilization of Bioactive Growth Factors into Cubic Proteinous Microcrystals (Cypovirus Polyhedra) and Control of Cell Proliferation and Differentiation. (2010) NSTI-Nanotech. 3: 222-225.
Satoshi Abe, Hiroshi Ijiri, Hashiru Negishi, Hiroyuki Yamanaka, Katsuhito Sasaki, Kunio Hirata, Hajime Mori, and Takafumi Ueno. Design of Enzyme-Encapsulated Protein Containers by In-Vivo Crystal Engineering. (2015) Advanced Materials. 27(48): 7951-7956.