PODS® Human DKK-1

Code Description Price Qty
PPH309-50 PODS® Human DKK-1, 50 million £100.00
PPH309-250 PODS® Human DKK-1, 250 million £305.00
PPH309-1000 PODS® Human DKK-1, 1 billion £1,025.00
PODS® co-crystals
PODS® co-crystals

PODS® Technology

PODS® proteins are made using an insect cell expression system in which the active protein is co-expressed alongside polyhedrin carrier protein. Polyhedrin forms microcrystals within insect cells which specifically capture the active protein to form a co-crystal complex. The active protein is captured in its nascent, natively folded form with limited scope for proteolytic degradation. Consequently, excellent levels of bioactivity are observed. The PODS® co-crystals provide a sustained release mechanism and can be used to functionalize surfaces. For further details, please refer to the PODS® Technology page.

Product Description

The product contains the polyhedrin protein co-crystalized with Human DKK-1. Dickkopf related protein 1 (DKK-1) is a member of the Dickkopf family of proteins that includes DKK-1, DKK-2, DKK-3, DKK-4, and a related protein Soggy. DKK-1 and DKK-4 are well documented antagonists of the canonical Wnt/β-catenin signaling pathway by forming inhibitory complexes composed of the Frizzled proteins and one of two low-density lipoprotein receptor-related proteins, LRP5 or LRP6. DKK-1 antagonizes Wnt by forming ternary complexes of LRP5/6 with Kremen1 or Kremen2. The balance between Wnt signaling and DKK-1 inhibition is critical for bone formation and homeostasis, resulting that insufficient or excess of DKK-1 activity in bone leads to an increased or decreased bone density, respectively. In adults, DKK-1 is expressed in osteoblasts, osteocytes, and neurons.

Usage Recommendation

PODS® co-crystals provide a depot of proteins which are steadily secreted. It has been estimated that the biological activity of 50 million PODS® co-crystals generates the same peak dose as 3.3 μg of standard recombinant protein. However, at 5 days following the start of seeding the PODS® co-crystals, there are more than 50% of these peak levels still present in the culture system. Ultimately, the amount of PODS® co-crystals that is optimal for a particular experiment should be determined empirically. Based on previous data, we suggest using 50 million PODS® co-crystals in place of 3.3 μg of standard growth factor as a starting point."

To control for cross-reactivity with cells or as a negative control, we recommend using PODS® growth factors alongside PODS® Empty crystals, as the latter do not contain or release cargo protein.

AA Sequence

MADVAGTSNR DFRGREQRLF NSEQYNYNNS KNSRPSTSLY KKAGFTLNSV LNSNAIKNLP PPLGGAAGHP GSAVSAAPGI LYPGGNKYQT IDNYQPYPCA EDEECGTDEY CASPTRGGDA GVQICLACRK RRKRCMRHAM CCPGNYCKNG ICVSSDQNHF RGEIEETITE SFGNDHSTLD GYSRRTTLSS KMYHTKGQEG SVCLRSSDCA SGLCCARHFW SKICKPVLKE GQVCTKHRRK GSHGLEIFQR CYCGEGLSCR IQKDHHQASN SSRLHTCQRH

Alternative Names

Dickkopf (Xenopus laevis) homolog 1, dickkopf homolog 1 (Xenopus laevis), dickkopf related protein-1, Dickkopf-1, dickkopf-related protein 1, Dkk1, Dkk-1, hDkk-1, SKdickkopf-1 like

Research Use Only

PODS® Limited Use Label License. A license applies for this product, please see Product User Guide below for details.
Product Details
Length 280 aa
Molecular Weight 31 kDa
Structure Monomer
Source Spodoptera frugiperda (Sf9) cell culture
Accession Number O94907
Endotoxin Level <0.06 EU/ml as measured by gel clot LAL assay
Formulation PODS® were lyophilized from a volatile solution
Reconstitution

PODS® co-crystals may be reconstituted at 200 million co-crystals/ml in water. 20% glucose has a buoyant density closer to PODS® co-crystals and can be useful for aliquoting.

PODS® co-crystals are highly stable when stored in aqueous solution (pH range 6 - 8).

Stability and Storage Upon receipt, store at 4°C. PODS® co-crystals are stable for at least 1 year when dry and 6 months when resuspended.

References

Fasséli Coulibaly, Elaine Chiu, Keiko Ikeda, Sascha Gutmann, Peter W. Haebel, Clemens Schulze-Briese, Hajime Mori, and Peter Metcalf. The molecular organization of cypovirus polyhedra. (2007) Nature. 446: 97-101.

Rey FA. Virology: Holed up in a natural crystal. (2007) Nature. 446: 35-37.

Mori H. Immobilization of Bioactive Growth Factors into Cubic Proteinous Microcrystals (Cypovirus Polyhedra) and Control of Cell Proliferation and Differentiation. (2010) NSTI-Nanotech. 3: 222-225.

Satoshi Abe, Hiroshi Ijiri, Hashiru Negishi, Hiroyuki Yamanaka, Katsuhito Sasaki, Kunio Hirata, Hajime Mori, and Takafumi Ueno. Design of Enzyme-Encapsulated Protein Containers by In-Vivo Crystal Engineering. (2015) Advanced Materials. 27(48): 7951-7956.