PODS® Human Oncostatin M

Code Description Price Qty
PPH351-50 PODS® Human Oncostatin M, 50 millio $155.00
PPH351-250 PODS® Human Oncostatin M, 250 milli $480.00
PPH351-1000 PODS® Human Oncostatin M, 1 billion $1,600.00
PODS® co-crystals
PODS® co-crystals

PODS® Technology

PODS® proteins are made using an insect cell expression system in which the active protein is co-expressed alongside polyhedrin carrier protein. Polyhedrin forms microcrystals within insect cells which specifically capture the active protein to form a co-crystal complex. The active protein is captured in its nascent, natively folded form with limited scope for proteolytic degradation. Consequently, excellent levels of bioactivity are observed. The PODS® co-crystals provide a sustained release mechanism and can be used to functionalize surfaces. For further details, please refer to the PODS® Technology page.

Product Description

The product contains the polyhedrin protein co-crystalized with Human Oncostatin M. Oncostatin M (OSM) is a member of the LIF/OSM family of proteins that participates in the regulation of haematopoiesis, neurogenesis, osteogenesis and inflammation. OSM can stimulate proliferation of cells such as fibroblasts and smooth muscle cells, but can also induce inhibitory effects on certain tumor cells lines. Furthermore, OSM regulates production and subsequent secretion of cytokines like IL-6, GM-CSF and G-CSF from endothelial cells. Human OSM shares 45% amino acid sequence homology with mouse and rat OSM and is active on murine cells.

Usage Recommendation

PODS® co-crystals provide a depot of proteins which are steadily secreted. It has been estimated that the biological activity of 50 million PODS® co-crystals generates the same peak dose as 3.3 μg of standard recombinant protein. However, at 5 days following the start of seeding the PODS® co-crystals, there are more than 50% of these peak levels still present in the culture system. Ultimately, the amount of PODS® co-crystals that is optimal for a particular experiment should be determined empirically. Based on previous data, we suggest using 50 million PODS® co-crystals in place of 3.3 μg of standard growth factor as a starting point."

To control for cross-reactivity with cells or as a negative control, we recommend using PODS® growth factors alongside PODS® Empty crystals, as the latter do not contain or release cargo protein.

AA Sequence

MADVAGTSNR DFRGREQRLF NSEQYNYNNS KNSRPSTSLY KKAGFAAIGS CSKEYRVLLG QLQKQTDLMQ DTSRLLDPYI RIQGLDVPKL REHCRERPGA FPSEETLRGL GRRGFLQTLN ATLGCVLHRL ADLEQRLPKA QDLERSGLNI EDLEKLQMAR PNILGLRNNI YCMAQLLDNS DTAEPTKAGR GASQPPTPTP ASDAFQRKLE GCRFLHGYHR FMHSVGRVFS KWGESPNRSR R

Alternative Names

Oncostatin-M, OSM

Research Use Only

This product is for Research Use Only.
Product Details
Length 196 aa
Molecular Weight 27.4 kDa
Structure Monomer
Source Spodoptera frugiperda (Sf9) cell culture
Accession Number P13725
Endotoxin Level <0.06 EU/ml as measured by gel clot LAL assay
Formulation PODS® were lyophilized from a volatile solution
Reconstitution

PODS® co-crystals may be reconstituted at 200 million co-crystals/ml in sterile PBS. 20% glucose has a buoyant density closer to PODS® co-crystals and can be useful for aliquoting.

PODS® co-crystals are highly stable when stored in aqueous solution (pH range 6 - 8).

Stability and Storage Upon receipt, store at 4°C. PODS® co-crystals are stable for at least 1 year when dry and 6 months when resuspended.

References

Fasséli Coulibaly, Elaine Chiu, Keiko Ikeda, Sascha Gutmann, Peter W. Haebel, Clemens Schulze-Briese, Hajime Mori, and Peter Metcalf. The molecular organization of cypovirus polyhedra. (2007) Nature. 446: 97-101.

Rey FA. Virology: Holed up in a natural crystal. (2007) Nature. 446: 35-37.

Mori H. Immobilization of Bioactive Growth Factors into Cubic Proteinous Microcrystals (Cypovirus Polyhedra) and Control of Cell Proliferation and Differentiation. (2010) NSTI-Nanotech. 3: 222-225.

Satoshi Abe, Hiroshi Ijiri, Hashiru Negishi, Hiroyuki Yamanaka, Katsuhito Sasaki, Kunio Hirata, Hajime Mori, and Takafumi Ueno. Design of Enzyme-Encapsulated Protein Containers by In-Vivo Crystal Engineering. (2015) Advanced Materials. 27(48): 7951-7956.