PODS® Human BMP-5

PODS® co-crystals
PODS® co-crystals

PODS® Technology

PODS® proteins are made using an insect cell expression system in which the active protein is co-expressed alongside polyhedrin carrier protein. Polyhedrin forms microcrystals within insect cells which specifically capture the active protein to form a co-crystal complex. The active protein is captured in its nascent, natively folded form with limited scope for proteolytic degradation. Consequently, excellent levels of bioactivity are observed. The PODS® co-crystals provide a sustained release mechanism and can be used to functionalize surfaces. For further details, please refer to the PODS® Technology page.

Product Description

The product contains the polyhedrin protein co-crystalized with Human BMP-5. BMP-5, also known as Bone Morphogenetic Protein 5, is a member of the TGF superfamily of proteins. Akin to the other functionally and structurally related bone morphogenic proteins (BMPs), BMP-5 is involved in cartilage and bone formation as BMP-5, along with BMP-6 and BMP-7, shares high sequence homology with BMP-2. Furthermore, BMP-5 is expressed by chondrocytes in proliferating bone growth plates and contributes to limb development by promoting proliferation and differentiation of chondrocytes as well as apoptosis of undifferentiated mesoderm. Outside the context of bone and cartilage, BMP-5 is expressed in the lung and liver as well as the trabecular meshwork and optic nerve head where it may have a role in the development and normal function. Furthermore, in the developing as well as adult nervous system, BMP-5 promotes dendrite outgrowth, morphology and dopaminergic neuronal differentiation. Analogous to other BMPs, BMP-5 is a disulfide-linked homodimer and highly conserved across animal species.

Usage Recommendation

PODS® co-crystals provide a depot of proteins which are steadily secreted. It has been estimated that the biological activity of 50 million PODS® co-crystals generates the same peak dose as 3.3 µg of standard recombinant protein. However, at 5 days following the start of seeding the PODS® co-crystals, there are more than 50% of these peak levels still present in the culture system. Ultimately, the amount of PODS® co-crystals that is optimal for a particular experiment should be determined empirically. Based on previous data, we suggest using 50 million PODS® co-crystals in place of 3.3 µg of standard growth factor as a starting point."

To control for cross-reactivity with cells or as a negative control, we recommend using PODS® growth factors alongside PODS® Empty crystals, as the latter do not contain or release cargo protein.

Animal-Free

This product is produced with no animal derived raw products. All processing and handling employs animal free equipment and animal free protocols.

AA Sequence

MADVAGTSNRDFRGREQRLFNSEQYNYNNSKNSRPSTSLYKKAGFAANKRKNQNRNKSSSHQDSSRMSSVGDYNTSEQKQACKKHELYVSFRDLGWQDWIIAPEGYAAFYCDGECSFPLNAHMNATNHAIVQTLVHLMFPDHVPKPCCAPTKLNAISVLYFDDSSNVILKKYRNMVVRSCGCH*

Alternative Names

BMP5, Bone Morphogenetic Protein 5

Research Use Only

This product is for Research Use Only.
Product Details
Length 139 aa
Molecular Weight 41.6 kDa
Structure Dimer
Source Spodoptera frugiperda (Sf9) cell culture
Accession Number P22003
Endotoxin Level <0.06 EU/ml as measured by gel clot LAL assay
Formulation PODS® were lyophilized from a volatile solution
Reconstitution

PODS® co-crystals may be reconstituted at 200 million co-crystals/ml in sterile PBS. 20% glucose has a buoyant density closer to PODS® co-crystals and can be useful for aliquoting.

PODS® co-crystals are highly stable when stored in aqueous solution (pH range 6 - 8).

Stability and Storage Upon receipt, store at 4°C. PODS® co-crystals are stable for at least 1 year when dry and 6 months when resuspended.

References

Fasséli Coulibaly, Elaine Chiu, Keiko Ikeda, Sascha Gutmann, Peter W. Haebel, Clemens Schulze-Briese, Hajime Mori, and Peter Metcalf. The molecular organization of cypovirus polyhedra. (2007) Nature. 446: 97-101.

Rey FA. Virology: Holed up in a natural crystal. (2007) Nature. 446: 35-37.

Mori H. Immobilization of Bioactive Growth Factors into Cubic Proteinous Microcrystals (Cypovirus Polyhedra) and Control of Cell Proliferation and Differentiation. (2010) NSTI-Nanotech. 3: 222-225.

Satoshi Abe, Hiroshi Ijiri, Hashiru Negishi, Hiroyuki Yamanaka, Katsuhito Sasaki, Kunio Hirata, Hajime Mori, and Takafumi Ueno. Design of Enzyme-Encapsulated Protein Containers by In-Vivo Crystal Engineering. (2015) Advanced Materials. 27(48): 7951-7956.