Cell Guidance Systems Blog

Antibody vs Nanobody vs non-antibody scaffolds: What's the difference?

Antibody vs Nanobody vs non-antibody scaffolds: What's the difference?

Since the 1986 approval of Muromonab, the first therapeutic monoclonal antibody (mAb), used to treat steroid-resistant transplant patients, mAbs have rapidly evolved and gained clinical ground become the largest class of biopharmaceuticals. During this period, mAbs have garnered a reputation for safety, favourable PKPD, and high levels of specificity that have made them a preferred drug modality in many therapeutic applications.

Read More

Infectious diseases: Can peptides address a deepening health crisis?

Infectious diseases: Can peptides address a deepening health crisis?

Antimicrobial resistance (AMR) is on the rise. By 2050, AMR may be killing more people than cancer does now. Already, the mortality rates and economic impact are alarming. According to the Centre for Disease Control the total cost of AMR in the USA is estimated at $55bn and results in over 35,000 deaths each year. The worldwide death toll is ticking over 700,000.

Read More

CRISPR's role in the progress of gene therapy

CRISPR's role in the progress of gene therapy

Little more than 10 years ago, the prospects for gene therapy were bleak. Early clinical trials had served to highlight the risks. In particular, the 1999 death of Jesse Gelsinger proved a turning point, and clinical progress stalled for years. The risks are now better understood and controlled, and in recent years so much has changed. The FDA's 2017 approval of the first human gene therapy drug, Luxurna, heralded a new era with a further twenty gene therapies approved by 2019 with 1000 more in clinical trials.

Read More

iPSCs: the long road to therapy

iPSCs: the long road to therapy

16 years on from the groundbreaking development of induced Pluripotent Stem Cells (iPSCs), the scientific community has generated an explosion of applications in the areas of high throughput drug discovery and developmental biology research. Personalised regenerative medicine and cell-based therapies are also on the horizon. But after all these years, iPSC-based therapy remains in its infancy. What are the future prospects?

Read More

How is blood made?

How is blood made?

Blood is a complex, dynamic mixture of cells, proteins, ions, sugars, hormones, nutrients, gases and more. The composition of blood constantly varies in response to our diet, exercise status, hydration, time of the day, injury and challenges from pathogens. As well as its role in mammals, blood products such as serum and albumin are important reagents for cell culture. What are the components of blood? Where do these components of blood come from?

Read More

Pharmacokinetics: What is it and why is it important?

Pharmacokinetics:  What is it and why is it important?

For a drug to be successful, just as important as what the drug does to the body, is what the body does to the drug. Not only is it important to transport therapeutic drugs effectively to where they are needed, but once it is there, they have to remain long enough to have an effect. Studies to understand a drug's journey through the body are in the domain of drug metabolism and pharmacokinetics, usually abbreviated to DMPK.

Read More

Thalidomide, the trailblazing molecular glue degrader

Thalidomide, the trailblazing molecular glue degrader

From 1957 to 1961, Thalidomide, a small molecule drug, was prescribed to treat a range of conditions in pregnant women including morning sickness. The developmental abnormalities that it caused in the developing foetus made the drug synonymous with pharmaceutical negligence. Despite this, in 1988, thalidomide was approved for the safe treatment of leprosy and cancer.

Read More

Could FGF17 rejuvenate the brain?

Could FGF17 rejuvenate the brain?

Rapidly increasing public and private research funding is increasing our understanding of the ageing process. This is starting to yield results that could allow therapeutic intervention. Surprisingly, it seems a single cytokine could modulate brain ageing. Could we be on the verge of therapies that will extend the limits of human health?

Read More

Zebrafish embryo surprised by morphogen cluster synergy

Zebrafish embryo surprised by morphogen cluster synergy

The development of complex multicellular forms, such as this zebrafish, relies on the activity of morphogen gradients acting differentially on individual cell surface receptors. The way receptors and their ligands present themselves to each other, either dispersed or in clusters, has a dramatic impact on the consequences of their interaction.

Read More

Green fingers: Plant scaffolds for body parts

Green fingers: Plant scaffolds for body parts

Wood, bamboo and other plant-derived materials are widely used to provide structural integrity for buildings. It turns out that plant-derived scaffolds can also be used, on a much smaller scale, to support the culture of cells grown in 3D. Importantly, as well as providing structure, plant structures can provide vasculature, on a similar scale to our own, enabling nutrients and signalling molecules to be carried to cells that are distant from the surface.

Read More